// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package misspell import ( "io" // "log" "strings" ) // StringReplacer replaces a list of strings with replacements. // It is safe for concurrent use by multiple goroutines. type StringReplacer struct { r replacer } // replacer is the interface that a replacement algorithm needs to implement. type replacer interface { Replace(s string) string WriteString(w io.Writer, s string) (n int, err error) } // NewStringReplacer returns a new Replacer from a list of old, new string pairs. // Replacements are performed in order, without overlapping matches. func NewStringReplacer(oldnew ...string) *StringReplacer { if len(oldnew)%2 == 1 { panic("strings.NewReplacer: odd argument count") } return &StringReplacer{r: makeGenericReplacer(oldnew)} } // Replace returns a copy of s with all replacements performed. func (r *StringReplacer) Replace(s string) string { return r.r.Replace(s) } // WriteString writes s to w with all replacements performed. func (r *StringReplacer) WriteString(w io.Writer, s string) (n int, err error) { return r.r.WriteString(w, s) } // trieNode is a node in a lookup trie for prioritized key/value pairs. Keys // and values may be empty. For example, the trie containing keys "ax", "ay", // "bcbc", "x" and "xy" could have eight nodes: // // n0 - // n1 a- // n2 .x+ // n3 .y+ // n4 b- // n5 .cbc+ // n6 x+ // n7 .y+ // // n0 is the root node, and its children are n1, n4 and n6; n1's children are // n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked // with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7 // (marked with a trailing "+") are complete keys. type trieNode struct { // value is the value of the trie node's key/value pair. It is empty if // this node is not a complete key. value string // priority is the priority (higher is more important) of the trie node's // key/value pair; keys are not necessarily matched shortest- or longest- // first. Priority is positive if this node is a complete key, and zero // otherwise. In the example above, positive/zero priorities are marked // with a trailing "+" or "-". priority int // A trie node may have zero, one or more child nodes: // * if the remaining fields are zero, there are no children. // * if prefix and next are non-zero, there is one child in next. // * if table is non-zero, it defines all the children. // // Prefixes are preferred over tables when there is one child, but the // root node always uses a table for lookup efficiency. // prefix is the difference in keys between this trie node and the next. // In the example above, node n4 has prefix "cbc" and n4's next node is n5. // Node n5 has no children and so has zero prefix, next and table fields. prefix string next *trieNode // table is a lookup table indexed by the next byte in the key, after // remapping that byte through genericReplacer.mapping to create a dense // index. In the example above, the keys only use 'a', 'b', 'c', 'x' and // 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and // genericReplacer.tableSize will be 5. Node n0's table will be // []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped // 'a', 'b' and 'x'. table []*trieNode } func (t *trieNode) add(key, val string, priority int, r *genericReplacer) { if key == "" { if t.priority == 0 { t.value = val t.priority = priority } return } if t.prefix != "" { // Need to split the prefix among multiple nodes. var n int // length of the longest common prefix for ; n < len(t.prefix) && n < len(key); n++ { if t.prefix[n] != key[n] { break } } if n == len(t.prefix) { t.next.add(key[n:], val, priority, r) } else if n == 0 { // First byte differs, start a new lookup table here. Looking up // what is currently t.prefix[0] will lead to prefixNode, and // looking up key[0] will lead to keyNode. var prefixNode *trieNode if len(t.prefix) == 1 { prefixNode = t.next } else { prefixNode = &trieNode{ prefix: t.prefix[1:], next: t.next, } } keyNode := new(trieNode) t.table = make([]*trieNode, r.tableSize) t.table[r.mapping[t.prefix[0]]] = prefixNode t.table[r.mapping[key[0]]] = keyNode t.prefix = "" t.next = nil keyNode.add(key[1:], val, priority, r) } else { // Insert new node after the common section of the prefix. next := &trieNode{ prefix: t.prefix[n:], next: t.next, } t.prefix = t.prefix[:n] t.next = next next.add(key[n:], val, priority, r) } } else if t.table != nil { // Insert into existing table. m := r.mapping[key[0]] if t.table[m] == nil { t.table[m] = new(trieNode) } t.table[m].add(key[1:], val, priority, r) } else { t.prefix = key t.next = new(trieNode) t.next.add("", val, priority, r) } } func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) { // Iterate down the trie to the end, and grab the value and keylen with // the highest priority. bestPriority := 0 node := &r.root n := 0 for node != nil { if node.priority > bestPriority && !(ignoreRoot && node == &r.root) { bestPriority = node.priority val = node.value keylen = n found = true } if s == "" { break } if node.table != nil { index := r.mapping[ByteToLower(s[0])] if int(index) == r.tableSize { break } node = node.table[index] s = s[1:] n++ } else if node.prefix != "" && StringHasPrefixFold(s, node.prefix) { n += len(node.prefix) s = s[len(node.prefix):] node = node.next } else { break } } return } // genericReplacer is the fully generic algorithm. // It's used as a fallback when nothing faster can be used. type genericReplacer struct { root trieNode // tableSize is the size of a trie node's lookup table. It is the number // of unique key bytes. tableSize int // mapping maps from key bytes to a dense index for trieNode.table. mapping [256]byte } func makeGenericReplacer(oldnew []string) *genericReplacer { r := new(genericReplacer) // Find each byte used, then assign them each an index. for i := 0; i < len(oldnew); i += 2 { key := strings.ToLower(oldnew[i]) for j := 0; j < len(key); j++ { r.mapping[key[j]] = 1 } } for _, b := range r.mapping { r.tableSize += int(b) } var index byte for i, b := range r.mapping { if b == 0 { r.mapping[i] = byte(r.tableSize) } else { r.mapping[i] = index index++ } } // Ensure root node uses a lookup table (for performance). r.root.table = make([]*trieNode, r.tableSize) for i := 0; i < len(oldnew); i += 2 { r.root.add(strings.ToLower(oldnew[i]), oldnew[i+1], len(oldnew)-i, r) } return r } type appendSliceWriter []byte // Write writes to the buffer to satisfy io.Writer. func (w *appendSliceWriter) Write(p []byte) (int, error) { *w = append(*w, p...) return len(p), nil } // WriteString writes to the buffer without string->[]byte->string allocations. func (w *appendSliceWriter) WriteString(s string) (int, error) { *w = append(*w, s...) return len(s), nil } type stringWriterIface interface { WriteString(string) (int, error) } type stringWriter struct { w io.Writer } func (w stringWriter) WriteString(s string) (int, error) { return w.w.Write([]byte(s)) } func getStringWriter(w io.Writer) stringWriterIface { sw, ok := w.(stringWriterIface) if !ok { sw = stringWriter{w} } return sw } func (r *genericReplacer) Replace(s string) string { buf := make(appendSliceWriter, 0, len(s)) r.WriteString(&buf, s) return string(buf) } func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) { sw := getStringWriter(w) var last, wn int var prevMatchEmpty bool for i := 0; i <= len(s); { // Fast path: s[i] is not a prefix of any pattern. if i != len(s) && r.root.priority == 0 { index := int(r.mapping[ByteToLower(s[i])]) if index == r.tableSize || r.root.table[index] == nil { i++ continue } } // Ignore the empty match iff the previous loop found the empty match. val, keylen, match := r.lookup(s[i:], prevMatchEmpty) prevMatchEmpty = match && keylen == 0 if match { orig := s[i : i+keylen] switch CaseStyle(orig) { case CaseUnknown: // pretend we didn't match // i++ // continue case CaseUpper: val = strings.ToUpper(val) case CaseLower: val = strings.ToLower(val) case CaseTitle: if len(val) < 2 { val = strings.ToUpper(val) } else { val = strings.ToUpper(val[:1]) + strings.ToLower(val[1:]) } } wn, err = sw.WriteString(s[last:i]) n += wn if err != nil { return } //log.Printf("%d: Going to correct %q with %q", i, s[i:i+keylen], val) wn, err = sw.WriteString(val) n += wn if err != nil { return } i += keylen last = i continue } i++ } if last != len(s) { wn, err = sw.WriteString(s[last:]) n += wn } return }